
I AlAA 2004-1232
' Applicationsof Space-Filling-Curves to

Cartesian ivietnoas for CFD

M. J. Aftosmis

NASA Ames Research Center
Moffett Field, CA 94404

M. J. Berger
Mail Stop T27B Courant Institute

251 Mercer St.
New York, NY 1001 2

S. M. Murman
ELORET

NASA Ames Research Center
Moffett Field, CA 94404

42nd Aerospace Sciences
Meeting and Exhibit

5-8 January 2004 / Reno NV

42r\Q AEROSPACE SCIENCES h4EETB’G 3 - D EXXIBIT
RENO NEVAD.A.5-8 JA?.T.kRY 2004

AIM-2004-1232

Applications of Space-Filling-Curves to Cartesian
Methods for CFD

M. J. Aftosmist M. J. BergerS S. M. MurmanY
Mail Stop T27B Courant Institute ELORET

NASA Ames Research Center 25 1 Mercer St. NASA Ames Research Center
Moffett Field, CA 94404 New York, NY 10012 Moffett Field, CA 94404
aftosmis@nas.Msa.gov berger@cims.nyu.edu smurman @nas.nasa.gov

This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh
-e%& k CFP. W!+ these !ech..;qn= w;ll he rtemnnctrated iifinp non-hody-fitted Cartesian
meshes, many are applicable on general body-fitted meshes -both structured and unstructured. We
demonstrate the use of single qN log N) SFC-based reordering to produce single-pass (@iV)) algo-
rithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh
interpolation operator has many practical applications including “warm starts” on modified geome-
try, or as an inter-,pid transfer operator on remeshed regions in moving-body simulations Exploiting
the compact construction of these operators, we further show that these algorithms are highly amena-
ble to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to
640 CPUs even when using multiggd as a smoother. Partition statistics are presented showing that the
SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-
domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used
to map a solution with N unknowns to another mesh with M unknowns with Q M + N) operations.
This capability is demonstrated both on moving-body simulations and in mapping solutions to per-
turbed meshes for control surface deflection or finite-difference-based gradient design methods.

1 Introduction
HE literature on numerical methods for Partial Differen- T tial Equations (€‘DES) contains a wealth of diverse

approaches for improving cache performance, performing
domain decomposition, mesh coarsening and inter-mesh
solution transfer. The infrastructure and algorithms supprt-
ing these operations are frequently unrelated and usually
require different data structures and infrastructure to perform
each task. For example, a high-performance, distributed-
memory, unstructured mesh code may use Reverse Cuthill-
McKee (RCM) ordering for improving cache-performance,
recursive spectral bisection, or multi-level nested dissection
for domain decomposition,[’l[’] a graph-based mesh
c o a r ~ e n e r [~ ~ ~ ~ I and variety of fast spatial search data struc-
tures for inter-mesh interpolation, or solution transfer to re-
gridded regions of a subdomain.

For each task, these techniques offer superb performance,
and many of them are amenable to some degree of parallel-
ization. Nevertheless, development and maintenance of such
a diverse collection of tools requires considerable investment,
and when a substantial overhaul is necessary (e.g. moving a
code to distributed-memory parallelization) the level of effort
required will be significant.

Space-filling-curves (SFCs) offer a unifying data structure
for all of these ends. Construction of these curves is
extremely inexpensive as the SFC index for any voxel in
space may be computed using only local infomation, and
thus computation of indices may be performed in parallel.

Research Scientist, Senior Member AIAA
Professor, Member AIAA ’ Senior Research Scientist, Member AIAA.

This material is declared a work of the U.S. Government and is not subject to copy-
right protection in the United States.

The asymptotic time complexity of constructing the curve is
therefore bounded by the sort algorithm which orders the
mesh along the curve. This sort can be performed with stan-
dard sorting routines sach as quicksort which produces a
method with O(N log IV) running time. After this initial sort,
all subsequent coarsening, decomposition, and interpolation
can may be performed with linear sweeps through the reor-
dered mesh.

2 Space-Filling-Curves
The central operation in using space-filling curves is a reor-
dering of the mesh using one of the dozens of well-docu-
mented space-filling-curves. In this work we consider both
the Morton and Peano-Hilbert order[61. Both orderings have
been explored in scientific computing in a variety of roles,
including the parallel solution of N-bod problems in compu-
tational physics17], algebraic multigrid[&, mesh generationJgl
in the solution of PDEs and dynamic repartitioning of adap
tive Figure 1 shows both Peano-Hilbert and
Morton SFCs constructed on Cartesian meshes at three levels
of refinement. In two dimensions, the basic building block of
the Hilbert curves is a “U” shaped line which visits each of 4
cells in a 2 x 2 block. Each subsequent level further divides
the previous level’s cells, creating subquadrants which are,
themselves, visited by (rotated) U shaped curves as well.
Similar properties exist for the Morton ordering which uses
an “ N shaped curve as its basic building block.

In three spatial dimensions the curves follow the same basic
construction rules, but the basic building block extends into
the third dimension with additional U or N-shaped turns. Fig-
ure 2 illustrates this 3-D construction for the U-order show-
ing: (a) the basic 2 x 2 ~ 2 building block @) the same mesh
after one uniform refinement, where each segment of the
curve is replaced with an appropriately rotated basic building

AIA.4 ?0&-1232 - 42ND AIA.4 AEROSPACE SCIENCES MEETING AND E x H ~ ~

a) m i H !

Figure I: Space-filling curves used to order three Cartesian
meshes in two spatial dimensions: a) Peano-Hilbert or “U-
ordering”, b) Morton or “N-ordering”.

block, (c) the curve after additional adaptive refinement of
cells near the back-south-west comer. Properties and d-
dimensional construction rules for these space-filling curves
are discussed extensively in refs. [ll], [12] and [13].

b.

Figure 2: U-order in three dimensions for (a) a basic 2 ~ 2 x 2
block of cells, (b) the same block after uniform subdivision
(c) cell order after refinement near the south-west-back cor-

Both orderings have locality ro erties which make them
attractive as mesh partitioners[’l[$. For the present, we note
only that such orderings have 3 important properties.

1. Mapping M : 2‘ - U : The U and N orderings each
provide unique mappings from the d-dimensional
physical space of the problem domain gd to a one-
dimensional hyperspace, U, which one traverses fol-
lowing the curve.

2. Locality: In the U-order, each cell visited by the
curve is directly connected to two face-neighboring
cells which remain face-neighbors in the one dimen-
sional hyperspace spanned by the curve. Locality in

3. Compact Construction: Encoding and decoding the
Hilbert or Morton order requires only local informa-
tion. Following the integer indexing for Cartesian
meshes outlined in ref. [SI, a cell’s I-D index in U
may be constructed using only that cell’s integer coor-
dinates in %d and the maximum number of refine-
ments that exist in the mesh. This aspect is in marked
contrast to other partitioning schemes based on recur-
sive spectral bisection or other multilevel decomposi-
tion approaches which require the entire connectivity
matrix of the mesh in order to perform the partition-
ing.

?!-3r2’Te3 dnm2ins is 2!rn%_t 25 gnr1[6].

To illustrate the compact construction rules for these order-
ings, consider the position of a cell i in the N-order. One way
to construct this mapping would be from a global operation
such as a recursive lexicographic ordering of all cells in the
domain. Such a construction would not satisfy the property
of compactness. Instead, the index of i in the N-order may be
deduced solely by inspection of cell i’s integer coordinates

Assume (X i , yi, zi) is the bitwise representation of the integer
co?rd,in?tes (xi. y j , zi) using m-bit integers. The bit sequence
{xiyi zi } denotes a 3-bit integer constructed by interleaving
the first bit of xi, yi and zi. One can then immediately com-
pute cell i’s location in U as the 3m-bit integer
{.,‘y~zfx~y~z,2...xlmy~z~). Thus, simply by inspection of a
cell’s integer coordinates, we are able to directly calculate its

(xi, yj, zJ.

I

Fzgure 3: Morton order of an adaptively refined Cartesian mesh
around a 2-D airfoil.

I

I
1

I

.41.4.4 2004- 1232 - 42ND AIAA &ROSPACE SCIENCES MEETWG .4ND EXHBT

location, M(i), in the one-dimensional space U without any
additional information. Similarly compact construction rules
exist for the U-~rder[’~].

In an h-refined Cartesian mesh, the finest cell can be used to
define the dimensions of a single voxel. All coarser cells may
then be reinterpreted as collections of this basic building
block and are referred to by the index of their lowest constit-
uent voxel. This interpretation leads to an integer indexing
scheme which can be used to address all cells in the computa-
tional domain. With this integer indexing scheme, the con-
struction rules in the previous paragraph can then be applied
to generate the Morton index, M(i), of all the cells in the
mesh. Figure 3 shows an example of the N-ordering on an
adaptively refined mesh around a 2-D airfoil.

Construction of the Peano-Hilbert index, H(i), follows a sim-
ilarly compact procedure. After computing the SFC indices
M(i) or H(i) for all the cells in the mesh, one simply takes
these indices as sort keys and applies any one of the standard
sorting algorithms (we use the quicksort algorithm from the
C standard library). Since all the other data required for con-
struction is local, the sort establishes the asymptotic bound
for runtime of the reordering and choosing quicksort gives
typical runtimes of o(N log N). In more concrete terms, com-
puting M(i) and H(i) and then sorting cells and faces takes
under 4 seconds per million cells on a 2Ghz Pentium 4.

3 Mesh Coarsening
The recursive nature of the SFC ordering makes it a natural
choice for a mesh coarsener for h-refined meshes. In the
same way that higher-order SFCs are generated by replacing
se-gnents with the basic U or N building block, the children
produced by h-refinement replace their parent cell in the
mesh. Since these children are sorted according to the local
SFC they will all be nearest-neighbors on a contiguous seg-
ment of the SFC in the space of the curve U.
Figure 4 illustrates this observation in two-dimensions. Fig-
ure 4a shows the baseline multilevel mesh as it comes out of
either the mesh generator or adaptation module. Frames (b)
and (c) show the same mesh after two successive coarsen-
ings. Cells in these meshes are ordered using the N-ordering,
and their indices in the SFC order are shown. In fig. 4a cells
22, 23, 24, and 25 all lie adjacent to one another in the 1-
dimensional hyperspace of the curve, U.
The coarsening algorithm proceeds with a single traversal of
U with a running index i and testing if the cell at U(i) is con-
tained within the same parent as the cell at U(i + 1). When a
contiguous group of cells are found that all coarsen into the
same parent cell they are agglomerated into that parent. If
any of the siblings in a contiguous set are further subdivided,
then all siblings of the set are “not coarsenable” and get
injected into the coarse mesh without modification.

The first coarsening of the mesh in fig. 4a produces the mesh
in fig. 4b. Cells 22-25 are coarsened in this first pass to pro-
duce cell 10 on the mesh in frame (b). Note that while cells
30.21 and 26 are all children of the same parent, they are not
coarsenable since 22-25 are one level finer. The next coarsen-

ing pass produces the mesh in frame (c). Since cells 8-1 1 on
mesh (b) were all siblings, they now coarsen to produce cell 5
on the mesh shown in frame (c).

(a)

Figure 4: Mesh coarsening example using Morton ordering. The
fine mesh in (a) is coarsened 2 times using the same SFC.

3 OFi2

AIAA 2001-1232 - 4 2 m AI.4.4 AEROSPACE SCIENCES MEETING .4ND EXHIBIT

Figure 5: Mesh coarsening example in 3D using agglomeration
along the SFC. The finest mesh contains 4.5M cells while the
coarsest contains 4500 cells after 4 coarsenings.

Figure 5 shows an example in three dimensions. In this
example, a 4.5M cell adaptively-refined mesh around two
surface ships has undergone 4 cycles of coarsening by
agglomeration along the SFC. The final mesh shown in the
lower right frame of the figure contains 4500 cells. In prac-
tice, typical coarsening ratios for the aloorithm are in excess
of 7 on realistically complex problems. fl61

4 Domain decomposition
The mapping and locality properties that are exploited for the
single-pass mesh coarsener described above make SFCs a
natural choice for partitioners on hierarchical
me~hes . [~~[~1['~1 ['~] Figure 6 illustrates these mapping and
locality properties for an adapted two-dimensional Cartesian
mesh, partitioned into three subdomains. The figure points
out that for adapted Cartesian meshes, the hyperspace U may
not be fully populated by cells in the mesh.

The quality of the partitioning resulting from U-ordered
meshes have been examined in ref. [lo] and were found to be

2-D physical space gqgr;;
part 1' 3

I

I
r I

s t I a I
1 -D hyperspace ,--,,,,,-----11

Part 1 Pa: 2 part 3
7 r r 3

a C, . 'g' - , h V

Figure 6: An adapted Cartesian mesh and assgciated space-filling
curve based on the U-ordering of M : 3 -+ U with the U-
ordering illustrating locality and mesh partitioning in two spa-
tial dimensions. Partitions are indicated by the heavy dashed
lines in the sketch.

competitive with respect to other popular partitioners.
Weights can be assigned on a cell-by-cell basis. One advan-
tage of using this partitioning strategy stems from the obser-
vation that mesh refinement or coarsening simply increases
or decreases the population of U while leaving the relative
order of elements away from the adaptation unchanged. Re-
mapping the new mesh into new subdomains therefore only
moves data at partition boundaries and avoids global remap-
pings when cells adaptively refine during mesh adaptation.
Recent experience with a variety of global repartitioners sug-
gest that the communication required to conduct this remap-
ping can be an order of magnitude more expensive than the
repartitioning itself['41. Additionally, since the partitioner just
inserts breaks into the U-ordered cell list on-the-fly, the entire
mesh may be stored as a single domain. At run-time, this sin-
gle mesh may then be partitioned into any number of subdo-
mains as it is read into the flow solver from mass storage.
One benefit of this approach is that a simulation begun on
some given number of CPUs may be restarted on a different
number of CPUs. Alternatively, when performing parameter
studies on a fixed mesh, each simulation may be run on a dif-
ferent number of CPUs - all sharing the same copy of the
input mesh file. In a heterogeneous shared timesharing envi-
ronment, where the number of available processors may not
be known at the time of job submission, the value of such
flexibility is obvious.

The SFC reordering pays additional dividends in cache-per-
fonnance. The locality property of the SFC produces a con-
nectivity matrix which is tightly clustered regardless of the
number of subdomains. Our numerical experiments suggest
that SFC reordered meshes have about the same data cache
hit-rate as those reordered using reverse Cuthill-McKee.

Figure 7 shows an example of a three dimensional Cartesian
mesh around the full Space Shuttle Launch Vehicle (SSLV)
configuration. This complex configuration includes the
orbiter, external tank, solid rocket boosters, and fore and aft
attach hardware. The computational mesh contains about
4.7M cells at 14 levels of refinement, and is indicated by a
single cutting plane passed through the mesh just behind the
SSLV geometry. The coloring of gridlines in the mesh shows
its partitioning into 16 subdomains using the U-order. Reor-
dering this mesh with the algorithm of $2 required 20 sec. on
a 2 Ghz Pentium 4, and preparing 4 levels of coarser meshes
for multigrid required 15 sec. on the same machine. Partition
boundaries are chosen to balance the load in each subdomain.
In determining work loads, cut-cells were weighted 2 . 1 ~ as
compared to un-cut Cartesian hexahedra.

The partitioning in fig. 7 demonstrates how, even on adap-
tively-refined meshes, the partitioning tends to produce sub-
domains that are largely rectilinear. On a uniform mesh, an
appropriately chosen number of partitions would result in a
cubical decomposition of the computational domain. This
"best case" establishes the minimum ratio of communication
to computation (surfaceholume ratio) for SFC partitioned
meshes. For any given number of cells, one can conceive of
an idealized cubical partitioner which would communicate
across some number of faces, F, given by:

i

4 QF!?

Figure 7: 4.7M cell mesh around full SSLV configuration includ-
ing orbiter, external tank, solid rocket boosters, and fore and
aft attach hardware. Mesh color indicates partitioning (16 par-
titions. U-ordering).

where .Vis the total number of cells in the domain and P is
the number of subdomains. The first term on the right is the
surface area of all the subdomains, while the second term

25GO00 1

Morton Pean~Hilber! ldeaiued Cubic

Figure 8: Pa-ttioning statistics for a 1M cell adapted Cartesian
mesh decomposed into 32 subdomains with two different SFCs
compared aith the idealized cubical partitioner described in the
IZXt.

a' ' " ' ' ' : ' "
0 8 16 23 3 2 40 48 56 64- L..- "=Dad:<"-,.

L . Y , L . . I I . \ I . . ".L..l\,.._.

Figure 9; Comparison of subdomain overlap of two different
adaptively refined meshes with an idealized cubic partitioner
with vaqing numbers of subdomains.

reduces this estimate by the surface area of the whole mesh
since no data is exchanged there. Real hierarchical meshes
coarsen rapidly away from geometry and have very few faces
on the domain boundary, thus the estimate of F, provided by
eq. (1) is a reasonable lower bound for evaluating the quality
of the partitioning provided by the SFC-based schemes.

Figure 8 examines the average partition statistics for a 1M
cell adaptively-refined mesh decomposed into 32 subdo-
mains. Even with &is large number of subdomains on a rela-
tively small mesh, this figure shows that both SFC
partitioners perform well.

Figure 9 expands upon this example to show how the parti-
tion quality changes with mesh size and number of partitions.
Results are shown for both t!!e 1 M cell mesh of fig. S and that
of fig. 7 with 4.7M cells. In both cases the results from the
actual Hilbert partitioning track the surface-to-volume of the
idealized cubic partitioner reasonably well. Results in the fol-
lowing sections will show that this partitioning sufficiently
minimizes communication to offer near ideal speedups on
very large numbers of processors.

All meshes in the multigrid hierarchy are partitioned using
the same approach. Since each coarse mesh is produced fol-
lowing the SFC on its finer counterpart, these are automati-
cally generated sorted into SFC order. After partitioning the
fine mesh the stack of coarse meshes are read in one-at-a-
time and each is partitioned on-the-fly using the same load-
balancing approach.

"-
Figure IO: Consistency of partitioning on coarser meshes. Since all

meshes in the multigrid hierarchy are partitioned with the same
SFC, multi-gid restriction and prolongation operators communi-
care primaily fineicoarse cells on their same processor.

.41.4.4 2004-1?32 - 42ND AI.4.A .4EROSP.4CE SCIENCES MEETING AND EXHIBIT

I Avg. #fine %Restrict to
1 2 Partitions

296912 12.2%
148456 19.3%
74228 32.7%

128 37114 57.2%

Table I : Partition overlap statistics for the SSLV mesh in fig. 7.

In most graph-based approaches to mesh partitioning, repar-
ririoning the coarse mesh offers no guarantee of good overlap
between coarse and fine partitions sitting on any given pro-
cessor. Since the intergrid transfer operators in multigrid
introduce communication between every cell in successive
meshes in the hierarchy, good overlap limits the amount of
off-processor bandwidth required for intergrid transfer. With
SFC partitioned meshes, all meshes are being partitioned by
exactly the same SFC, uniformly coarsened meshes would
have maximal overlap with their finer counterparts. In prac-
tice, the coarsening is modified by refinement boundaries and
coarsening rules, but uniform coarsening remains a good
model. Figure 10 demonstrates this by showing the coarsen-
ing of a multilevel Cartesian mesh around a reentry vehicle.
For simplicity, the mesh is shown partitioned into 2 subdo-
mains. The subdomain boundaries in this example show good
consistency of partitioning and 96% of the cells on the finest
mesh restrict to coarser cells residing on the same processor.
Only 4% of the communication for intergrid transfer needs to
go between processors.

Table 1 extends these observations to larger numbers of pro-
cessors. The table contains partition overlap statistics for the
4.7M cell mesh around the SSLV example in fig. 7. Overlap
statistics are included for 8 to 128 partitions, and the data
includes the average percentage of fine cells that restrict to
different partitions. With 8 partitions on the mesh, under 8%
of the cells need to communicate with different partitions.
This percentage grows as the mesh is cut into ever smaller
pieces, but at 64 processors nearly two thirds of the cells are
still on the same processor as their coarser counterparts. At
128 processors this number has dropped-off somewhat and
over half of the cells on the partition need to restrict to part-
ners off-processor. Note, however that by this point, the parti-
tions are extremely small. On average, each contains only
37000 cells and requires less than 25 Mb of storage on each
processor.

4.1 Scalability and Performance
Scalability tests were conducted using the 4.7M cell mesh
from fig. 7. Flow conditions for the test had the SSLV at
M,= 2.6, a = 2.09", p = 0.8". Isobars of the discrete solution
are shown in fig. 11. The inviscid multilevel solver from [I51
and [I61 was tested using both Openh" and MPI communi-
cation libraries for both single and multigrid runs.
Figure 12 shows scalability results for this case on an SGI
Origin 3000 (60OMhz, Mips R14000 CPUS) without multi-

Figure I] : Isobars in discrete solution for SSLV configuration at
= 0.8". This case was used for scal- Mm = 2.6, a = 2.09".

ability results.
grid. Results are presented using both OpenMP and MPI for
off-processor communication. The MPI code was compiled
using the SGI's native MPI library. Performance is linear
across the entire experiment with parallel speedups of 599
and 486 for the OpenMP and MPI codes (respectively) on
640 CPUs. On this many CPUs the even a 4.7M cell mesh
has only about 7350 cells per processor, thus the partitions
are extremely small. Despite this very fine partitioning,
results with both communication protocols are performing
well, and the SFC partition quality (cf. fig. 8) is more than

- Dptll\!P 4 6 h! cells ISTS Lauuch Coufip)
m--m hlPl 4 6 Irf cells (STS Launch Conlig)

5 0 0

128 256 383 512 640
CPUs

Figure 12: Parallel scalability of single grid scheme on 4.7M
cell SSLV test case on SGI Origin 3000. Results are dis-
played using both OpenMP or MPI for communication

6 O F 1 2

AIA.4 2004- 1232 - 42NJ AL4.4 .4EROSPACE SCIENCES MEETING AND EXXIBIT

2 1
5 $00-

v3

, I , , ,

O : ' ' , ' ' . 128 2.56 " " " ' 384 512 610
#f CPUs

Figure 13: Parallel scalability of 3-level multigrid scheme on
4.7M cell SSLV test case on SGI Origin 3000. Results are
displayed using both OpenMP or MPI for communication

adequate on this computing platform. To reiterate this point,
the plot also shows results for a 1.6M cell mesh distributed
onto as many as 256 processors (-6250 cells/partition). This
curve lays on top of the ''ideal'' curve over its entirety. The
slight performance advantage shown by OpenMP is probably
due to the additional time required in the h P I code to explic-
itly pack and unpack the messages passed between partitions.
All scalability runs were conducted with the machine in non-
dedicated mode (normal queuing system), and its expected
h t soixc of tke iircgilziity iii the ciirfes would improve
under dedicated usage.

Figure 13 shows a similar scalability study using 3-level mul-
ti-grid (W-cycles) using the same test cases. The additional
commmicaticn load due to off-processor ixxergrid transfer
pointed to by Table 1 is only slightly apparent above 384
CPUs. Nevertheless results are still quite good. The OpenMP
code achieves parallel speedups of about 514 on 640 CPUs
while the MPI version shows about 492. The first and second
coarse meshes in this grid hierarchy have 700000 and 105000
cells respectively. These translate into average cell counts of
only 1100 and 180 cells per partition.

5 Inter-mesh Interpolation
The problem of efficient transfer of solutions or residuals
from one mesh to another comes up frequently in vehicle
analysis. In stability and control analysis, for example, one
may wish to "warm-start" a solution with a deflected control
surface from some undeflected baseline solution. In design
using finite-difference-based gradients, it is common practice
to compute a baseline configuration and then perturb the
shape to establish the gradients with respect to the shape
change. Since these perturbations are small, it makes sense to
re-use the pre-computed baseline to warm-start the perturbed
solutions. In moving-body simulations, when the body has
moved, the geometry is no longer the same and we are again

in a situation of needing to transfer the solution (and perhaps
residual) to a new, but nearby, mesh.

In general, cells in the new mesh do not have a one-to-one
correspondence with cells in the old mesh and some sort of
three dimensional interpolation is required. At worst, finding
interpolants may require searching over all the cells in the
mesh, and such brute force algorithms are not practical. With
N cells in the old mesh and M cells in the new mesh, any
algorithm that m s in O(N M) time is sure to be expensive
when both N and Mare IO7 or IO8.
Even with parallelization and more sophisticated algorithms,
inter-mesh uansfer can be expensive. For cxwipk, Xcf. ii7j
reports that finding interpolation coefficients on a 324000
cell mesh required 200 seconds on 16 CPUs. Other
approaches use binning, hashing or a variety of spatial tree
structures to limit the exhaustive searching needed for finding
interpolation sten~ils['*1~'~]. Since these data structures are
created for the interpolation, their construction cost (typically
O(N log N)) must be included in the interpolation time.

SFCs offer an attractive alternative for performing this trans-
fer. The key to this use is to recognize that for any Cartesian
meshes with the same bounding box and number of coarse
divisions, a single SFC describes all possible meshes cover-
ing the space. Essentially the SFC is playing the same role as
a spatial data structure that spatial trees or coordinate bisec-
tion play in other approaches. An important difference is that
rather than sorting into bins or traversing trees, the SFC sorts
the meshes into a unique order visiting each cell only once in
each mesh. Wth both meshes sorted, mapping from one to
another hecomes a sim-ple task of walking down the SFC
through both meshes in "lock step", marking time in one or
the other as needed to accommodate nested refinement or
boundaries.

Figure 14 provides a more concrete view of this using an
example where we wish to map the data from the red mesh
(left) to the blue mesh (right). Both meshes are visited by the
same SFC. In the sketch, each cell is annotated with its SFC
index showing the order in which the mapping algorithm
sweeps the mesh. Cells 1-4,d and 1-4blue are identical (same
SFC index, and same size), so the current position counters
for each of the two meshes will get incrementcd symmetri-
cally as we progress through these cells. Entering cell 5, we
note that 5b1uc is larger than 5red so the counter on the blue

3
Figwe 14: SFC used to map data from the red mesh (left) to the

blue mesh (right).

AIAA 2004-1232 - :?SD ALL4 AEROSPACE SCIENCES MEETING AND EXHIBIT

I

Figure IS: SFC used to map data from the red mesh (left) to blue

mesh will not get incremented until it encounters the next cell
on the red mesh that is not contained. In this way we simply
mark time on the blue mesh until we encounter gred which is
the first cell not contained by jbLue. Data in 5-8,d all get
mapped to 561rre. gred is the first uncontained cell and we
immediately notice that 9bLue is smaller than gred This time
its the red counter that gets suspended while cells 9-12b1ue all
receive a prolongation of the data in gre& Cells 13-16 match
one-to-one in both meshes and are filled by direct injection.

From this sketch of the algorithm several things are clear: (1)
Counters in both meshes increment monotonically. (2) At ter-
mination, both counters reach their respective maximums. (3)
Every step of the algorithm increments counters in either the
red, blue or both meshes. Thus if there are N cells in the red
mesh, and there are M cells in the blue mesh, the algorithm
has a run-time complexity of @N + M), provided that the red
and blue meshes are already in SFC order. If the meshes are
not already sorted, the operation is bounded by the
O(N log N) complexity of the reordering.

Figure 15 outlines the sitnation when the red or blue meshes
contain internal geometry. In this situation, cells that are
completely internal to the geometry do not appear in the
meshes. This leaves a gap in the SFC indexing on the mesh
not covered by the extent of any cell. In the figure, cells 1-7
map one-to-one but there is a gap between rlred and gred not
cover by the size of 7re& Thus no map exists for 8biUe. Cells
9-1 1 map one-to-one, but 12,d has no counterpart in the blue
mesh. Since we .are interested in generating a mapping from
blue to red, 861ue gets assigned a nomup flag, and 12,, sim-
ply gets skipped.

Figure 16 contains Algorithm M. with a detailed description
of the full mapping algorithm handling both mesh refinement
and changes in geometry. This algorithm is couched as a
driver loop over the blue mesh which recursively calls a map-
ping function that increments counters in the red and blue
mesh. Since it visits each cell in the red and blue meshes
once each, Alg. M. has run-time complexity of o (N + M)
which is linear in the total number of cells on the red and blue
meshes -provided that both meshes are already sorted in SFC
order. The algorithm makes use of the same prolongation and
restriction operators as used by the multigrid scheme. Direct
injection is used for prolongation of the flow state, while vol-
ume weighted averages are used for restriction. Since the
majority of the cells map either 1: 1 or, as a coarsening/refine-
ment, the tail-recursion in M4.1.I is rarely exercised. The

mesh (right) with internal geometry.

driver loops on blue mesh
next red = end red = 0;
for&& hex in-blue nr=sh{

blue2red[thi-blue] = getMap (&-red, &-red);
next-red = endured

}

end-red = &is-reii;-

1.1 map = INJECT fm thi?-red to this-blue;
1.2 incr-t &-red;

2.1 rap
2.2 D3 NOT incrmt em-red

3. if (this-red w i t h i n this-blue)

getMap (this red, end red) {

1. i f samzHex(this blue, this red) I : I mappin$

2 . if (this blue w i t h i n this red) I:Nmapping, severa,
PROLONG fran rd to bluebluesmap tosame re6

N:l mapping, several
reds map to same blur

3.1 scan forward in red:
while (end red w i t h i n this blue) incrment end red

3.2 mp = R E S ~ R I C T fran this--& to &-red intoTilue

4. Red and blue cells don't overlap, must be a gap in SFC on one
mesh or other, compare SFC index of both cells

4.1 i f SFC(this-red) < SFC(this-blue) gap in blue

getMap (this r&l,this blue)
4 .2 if SFC(this red)-> SFC(this-blue) gap in red

4 .1 .1 Incrmt s t a r t i n red and call ge"q

4.2.1 Corres@nciing cell d i H t &st i n red msh
map = NO-MAP

return mp;
}

Figure 16: Algorithm M: Given blue and red meshes pre-

current algorithm simplifies the implementation at a nominal
run-time cost. When the blue mesh encounters a region for
which there is no mapping (due to a hole, or "solid" region,
in the red mesh) it gets a NO-MAP flag. When used for
restarts, these nomaps are populated with freestream quanti-
ties. In the case of time-dependent moving-body simulations,
izonzaps indicate a cell that was uncovered by the motion of
the geometry over the timestep. In this case, the state vector
is set to zero, and the cell is filled by the space-time fluxes in
the moving-body scheme.

Since it is a linear-time procedure, Algorithm M typically
runs in seconds, even on meshes containing several million
cells. Timing examples were run on a 2 Ghz Pentium 4 desk-
top machine using meshes similar to the 4.7M SSLV case
used above. In these, tracing the space-filling-curve with
Algorithm M takes about 0.5 seconds, and actually transfer-
ring the state vector using this map takes about 1.5 seconds.
Reordering cells and faces using the space-filling-curve for
such a mesh takes about 20 seconds, however this one-time
cost was already paid during construction of the coarse
meshes on the receiving grid.

The real utility of the intergrid transfer comes when the
geometry is slightly modified and we seek a solution to a
nearby problem. Since Cartesian meshes are ridged, they do
not distort to follow the moving geometry, but instead result
in a mesh with a different, but nearby, sets of cut, volume and
interior cells. Examples of this exist in design, control sur-
face deflection, and moving body simulations.

sorted in SFC order, create blue-to-red mapping,

I

Figure 17: Transonic business jet example with T-tail, pylons and
nacelles. Horizontal tail is shown in baseline position and
direction of 2" deflection is indicated by the arrows.

The first example considers deflection of the T-tail on a tran-
sonic business jet. Figure 17 shows a generic business jet
with T-tail, wings, pylons and nacelles. After computing the
baseline configuration, the movable horizontal tail is
deflected 2" to increase the nose-up pitching moment The
convergence plot in Figure 18 monitors forces and the L,
norm of density in the discrete solution. At M,= 0.72 and
a=2.8", the baseline confiepation converges by 150 (3-
level) multi,gid cycles with about 6 orders of ma-@ude in
the L1 norm on a mesh with about 1.1M cells. This simula-
tion was run using full-multigrid s&p, so the coarse grid
iterations are extremely fast. In this simulation, the lift vector
is almost aiigned with the y-axis, and inspection of this com-
ponent of the integrated force vector shows that it stabilizes
after 40-50 cycles on the fine mesh. Convergence continues
until about 150 cycles.

The clcse-gp of the t d in fig. 17 shews rhe deflection of the
tail about its hinge. The tail was deflected 2" followed by a
regeneration of a new volume mesh, a reordering and coarse

, 13"

deflection

-01 .

L1 Resldual
X Force

.- Y Force

-
_ _ _

\ I \

-02 ' ' 10.-
0 50 100 150 200 250 30:

Mulligrid W-Cycler
Figure 18: Convergence and force history of transonic business jet

example at Mach 0.72. a 2.8". The plot shows convergence of
the baseline Configuration as well as wam-stan on the 2"
deflected mesh after solution transfer.

mesh generation. Total time for this process was under 1
minute on a 2Ghz Pentium 4. The solution from the unde-
flected case was mapped to the new mesh and wann-started
by the solver. Performance of this restart is tracked by the
second half of the convergence plot (see annotation in fig.
18). Upon restart, the force vector changes to its new value
by the end of the first multigrid W-cycle. Forces are con-
verged to 3 digits after only 7 cycles and 4 digits after 40
cycles on the new mesh.

Despite the presence of substantial geometry in the flow, the
baseline full multigrid solution for this case shows very rapid
convergence. Nevertheless the solution transfer and subse-
quem warm start Gcrs a i impujVcliiciit. Since Ciiiie~iiiz
meshes of the baseline and deflected configurations are iden-
tical away from the geometry change and the meshes contain
roughly the same characteristics, residual levels on the
restarted mesh are directly comparable with those on the
baseline grid. The warm-started solution reached lo4 in one
half the wall-clock time required by the baseline solution to
reach this point (including the time for FMG startup). These
results are typical for warm starts, and they usually offer sav-
ings on the order of 1.5-5 on configurations of realistic com-
plexity, [2011211

6 Moving Body Simulations
As shown in the preceding section, solution mapping is a
convenience in design or in configuration studies. However in
moving-body simulations, the mapping of the solution (and
perhaps residual) at one time level to a new geometry and
mesh at the new time level is a necessity since this is the only
way the fiow's history gets communicated through the simu-
lation. The moving-boundary method of Ref. [22] requires
that at each iniplicit timestep, the geometry be moved, and
the Cartesian mesh be re-adapted and recut to the updated
geometry. The simulations are then advanced over the next
implicit iteration using a paraiiei multi rid scheme much iike
that discussed in the present workipFSuch simulations use
SFCs not only for the solution transfer, but also for the
domain decomposition and coarse mesh generation. This
strategy exercises all uses of the SFCs outlined in the present
paper.

An example of much recent interest comes from the unfortu-
nate loss of the STS-IO7 orbiter and crew on 1 Feb. 2003. In
this case, foam debris from the forward attach hardware (the
bipod ramp) was released at 81.7 seconds Mission Elapsed
Time (MET) at an altitude of 65,600 feet. Technically, this
case is interesting since an object measuring only inches
across is being transported around 80 feet to its impact loca-
tion. Conditions were Mach 2.46, a = 2.08", p = -0.095'.
Figure 19 shows a composite image of isobars in this moving
body simulation done with the method of [22].

The mesh is similar to the SSLV mesh shown earlier, but with
additional refinement around the bipod, bipod ramps, and
foam debris. At the start of the simulation this mesh con-
tained about 4.6M cells. Figure 20 shows the mesh near the
symmetry plane and STS-107 Launch Vehicle geometry col-

.41.4A 2004-1232 - 42No AIAA .&EROSPACE SCIENCES MEETING A h 9 EXHIBIT

Figure 19: Composite (multiple exposure) of isobars in moving-
body simulation of STS-107 debris event at 81.7 seconds MET
from Ref.[23], using the Cartesian method of Ref.[22]

ored by mesh partition number. The figure includes frames
from four time levels of the simulation. The back-to-back
comparison of these provides some useful observations about
the behavior of SFC based mesh partitioners.

As alluded to earlier, at each timestep in the moving-body
simulation the mesh must be adapted to track the moving
geometry. This mesh then undergoes a single reordering
using the quicksort algorithm as described in $2. From there,
three coarse meshes are produced with the linear-time algo-
rithm of $3, and the solution gets transferred with the single-
pass method of $5. Efficient solution with the multilevel
method of [16] and 1221 demands that the modified mesh be
load-balanced, and this re-balancing uses the same ordering
using the partitioning scheme of $4 for all meshes in the mul-
tigrid hierarchy. Over the course of the simulation, the mesh
size varied from 4.6 to about 4.8M cells, and the entire simu-
lation was run on 32 partitions. There were 135 timesteps in
the simulation.

The partition coloring in fig. 20 reveals the characteristic
“blockiness” of SFC-based partitioning in all the snapshots.
Comparing any two frames shows that while the partitioning
does change over the simulation due to the requirements of
load-balancing a dynamically adapting mesh, the partitioning
remains extremely consistent over the entire simulation. At
no time does a processor that was working on one portion of
the domain find itself integrating an entirely different set of
cells at the next timestep. For dynamically partitioned grids,
this observation implies that data residing in one node may
undergo only minor modification when some distant region
of the mesh is modified. The figure shows that even the parti-
tions containing the debris motion undergo only minor modi-
fication over the course of the simulation. The layout of the
problem on the machine is largely static, and while the parti-
tion boundaries do respond to mesh modifications, these
changes involve only a subset of the cells near the partition
boundaries. Since these boundaries are largely static, the
moving debris passes through 4 mesh partitions over its tra-
jectory (labeled a-d in the first frame of fig. 20).

Figure 20: Snapshots of mesh, geometry and mesh partitioning of
STS-107 debris case used in moving-body simulation of foam
debris impacting orbiter leading edge [23]. The debris travels
through several mesh partitions over its trajectory, while the
partitioning stays relatively constant despite load-balancing at
every timestep.

AIAA 2004-1232 - 42ND AIA.4 AEROSPACE SCIESCES MEFJTINCJ .4ND E m I T

7 Summary
We have examined the use of space-filling-curves in a variety
of roles in CFD including mesh coarsening, domain decom-
position, and inter-mesh interpolation. While these tech-
niques were demonstrated using non-body-fitted Cartesian
meshes, many are applicable on general body-fitted meshes.
Algorithms for all of these uses were shown to have linear
complexity after performing a single o(N log N> reordering
of the mesh. On current commodity desktop processors the
reordering typically takes under 5 seconds per million cells,
while coarsening, partitioning, or solution transfer are all
even faster.

On adaptively-refined Cartesian meshes, the coarsening algo-
rithm produces coarsening ratios ,of around 7 on practical
problems, while the partitioner demonstrated linear scalabil-
ity to well over 600 CPUs with as few as 7000 cells in each
partition. The single-grid scheme posted speed-ups of 599 on
640 CPUs on real-world problems with complex geometry.
Results were presented showing that in parallel multigrid
applications, the partitioner consistently arranges subdo-
mains on coarse and fine meshes with good overlap, thus
minimizing the bandwidth required for prolongation and
restriction. As a result, the parallel multigrid algorithm scales
nearly as well as its single-grid counterpart.

The inter-mesh interpolation algorithm has many practical
applications in CFD processes. These include warm-starting
solutions after modifying geometry in a configuration study,
obtaining Frechet derivatives in design, and as an intera&d
transfer operator on remeshed regions in moving-body simu-
lations. The algorithm also has linear asymptotic complexity
and can be used to map a solution with N unknowns to
another mesh with M unknowns with O(M + N) opeiztions.
These capabilities were demonstrated both on configuration
studies examining control surface deflection and moving-
body simulations examining debris transport through h e flow
around the full Space Shuttle launch vehicle during ascent.

8 Acknowledgements
The authors would like to thank G. Adomavicius for his con-
tributions to the reordering tools. Additionally we are grateful
to R. Gomez, D. Vicker (NASA JSC), S. Rogers and W. Chan
(NASA ARC) for their work on geometry used in the SSLV
simulations. Marsha Berger was supported by AFOSR grant
F19620-005099 and by DOE grants DEFGO2-00ER25053
and DE-FC02-0 1ER25472.

9 References
[I] Karypis, G., and Kumar, V., “METIS: A software pack-

age for partitioned unstructured graphs. partitioning
meshes, and computing fill-reducing ordenngs of sparse
matrices.” University of Minn. Dept. of Comp. Sci.,
Minneapolis, MN., Nov. 1997

[2] Schloegel, K., Karypis, G., and Kumar, V., “Parallel
Multilevel Diffusion Schemes for Repartitioning of

Adaptive Meshes.” Tech. Rep. P97-014, University of
Minn. Dept. of Comp. Sci., 1997.

[3] Ollivier-Gooch, C., “Robust Coarsening of Unstruc-
tured Meshes for Multigrid Methods.” Presented at the
14th A M Computational Fluid Dynamics Conference,
Norfolk, Virginia, Jun. 1999.

[4] Venkatakrishnan, V and Mavriplis, D. J.,“Agglomera-
tion multigrid for the three-dimensional Euler equa-
tions.” NASAKR-191595, 1995.

[5] Aftosmis. M.J., Berger, M.J., Melton, J.E.: “Robust and
efficient Cartesian mesh generation for component-
L-.J ,.---mc.-- A r A A D,,,, O ~ J - I J O C ; inn io07

[6] Samet, H., The design and analysis of spatial data
structures. Addison-Wesley Series on Computer Science
and Information Processing, Addison-Wesley, 1990.

[7] Salmon, J.K., Warren, M.S., and Winckelmans, G.S.,
“Fast parallel tree codes for gravitational and fluid
dynamical N-body problems.” Intl. J. for Supercomp.
Applic. 8(2), 1994.

[8] Griebel, M., Tilman, N., and Regler, H., “Algebraic
multigrid methods for the solution of the Navier-Stokes
equations in complicated geometries.” Intl. J. N m r .
Merhods for Heat and Fluid Flow 26, pp. 281-301.
1998. Also SFB report 342/1/96A, Institut f i r Informa-
tik, TU Miinchen, 1996.

[9] Behrens, J., and Zimmennann, J., “Parallelizing an
unstructured o&d generator with a space-filling curve
approach, in Euro-Par 2ooo Parallel Processing, 6th
International Euro-Par Conference. Munich. Germany,
AugustJSeptember 2000, Proceedings, A. Bode, T. Lud-
wig, W. Karl, R. Wismiiller (Eds.), Lecture Notes in
Computer Science 1900, Springer-Verlag. 2000. 8 15-
823.

[ilj] Pilkington, J.R., and Baden, S.B.. “Dynamic partition-
ing of non-uniform structured workloads with spacefill-
ing curves.” IEEE Trans. on Parallel and Distrib. Sys.
7(3), Mar. 1996.

[I 13 Sagan, H., Space Filling Curves. Springer-Verlag, ISBN
0387942653. Sep. 1994.

[121 Schrack, G.. and Liu, X., “The spatial U-order and some
of its mathematical characteristics.” Proceedings of the
IEEE Pacific Rim Con$ on CommunicariOnr, Computers
and Signal Processing. Victoia B.C, Canada, May 1995.

1131 Liu, X., and Schrack, G., “Encoding and decoding the
Hilbert order.” Software - Practice and Experience,
26(12), pp. 1335-1346, Dec. 1996.

[141 Biswas, R., Oliker. L., “Experiments with repartitioning
and load balancing adaptive meshes.” NAS Technical
Report NAS-97-021, NASA Ames Research Ctr., Mof-
fett Field CA., Oct. 1997.

[15] Berger, M. J, Aftosmis, M. J., Adomavicius, G., “Paral-
lel multigrid on Cartesian meshes with complex geome-
try”., Proceedings of the 8th International Conference
on Parallel CFD, Trondheim Norway, Jun. 2000.

“W”VS””’*”C.J. ‘..I.‘.. -y-, , I “L/ . . , - l - . *.*..

I I OF12

AIAA 2004-1232 - 42ND AIAA AEROSPACE SCIENCES MEETrNG AND EXHIBIT

[161 Aftosmis, M. J., Berger, M. J, and Adomavicius, G., “A
parallel multilevel method for adaptively refined Carte-
sian grids with embedded boundaries.” AlAA Paper
2000-0808, Jan. 2000.

[17] Cliff, S.E., Thomas, S.D., Baker, T.J., Jameson, A., and
Hicks, R.M., “Aerodynamic shape optimization using
unstructured grid methods.”, AIAA 2002-5550, 9th
AIAAASSMO Symp. on Multidisciplinary Analysis and
Optimization, Sep. 2002.

[18] Plimpton, S., Hendrickson, B., Stewart, J., “A parallel
algorithm for interpolation between multiple grids.”
Proc. of the 1998 ACMIICCC Cor$ on Supercornput.
San Jose CA., E E E Washington DC, ISBN 0-89791-

[19] Rogers, S. E., Suhs, N. E. and Dietz, W. E. “PEGASUS
5: An Automated Pre-processor for Overset-Grid CFD,”
AIM Paper 2002-3186, AIAA Fluid Dynamics Confer-
ence, June 24-27, 2002, St. Louis. PubIished in AtAA J .
41(6), June 2003, pp. 1037-1045.

[20] Nemec, M., Aftosmis, M.J., and Pulliam, T.H. “CAD-
based aerodynamic design of complex configurations
using a Cartesian method.” AIAA 2004-01 13. Jan. 2004.

[21] Muman, S.M., Aftosmis, M.J., and Berger, M.J., “Sim-
ulations of 6-DOF motion with a Cartesian method.”
AIAA Paper 2003-1246,41st AIAA Aerospace Sciences
Meeting, Reno NV, Jan. 2003.

[22] Murman, S.M., Aftosmis, M.J., and Berger, M.J.,
“Implicit approaches for moving boundaries in a 3-D
Cartesian method.” AZAA 2003-1119. Jan. 2003.

[23] Gomez, R.J. 111, Aftosmis, M.J., Vicker, D., Meakin,
R.L., Stuart, P.C., Rogers, S.E., Greathouse, J.S., Mur-
man, S.M., Chan, W.M., Lee, D.E., Condon, G.L., and
Crain, T., “Debris transport analysis” Columbia Acci-
dent Investigzticn I3o-d Report, Vcl. II, Appeodix D.8,
U. S. Government Printing Office, Oct. 2003.

984-X 1998.

